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In this paper I present a possible proof of the Riemann Hypothesis. The 

proof was inspired by a unifying societal philosophy: Recursive 

Perspectivism. Recursive Perspectivism, the proof itself as well as their 

relations are described in the book “The path of humanity: societal 

innovation for the world of tomorrow” (in press, 2018; I will refer to it as 

“the book”), and the presentation “Dicey proofs of the Riemann hypothesis” 

(December 31, 2017; I will refer to it as “the presentation”).  

The book is not about number theory. The book is about human development, 

societal innovation and sustainability, and it is founded on a Recursive 

Perspectivism which in turn gives rise to a recursive multi-actor 

interpretation of societal practice. During the writing of “The path of 

humanity” I slowly came to understand the deep ways in which The path of 

humanity, Bernoulli experiments and the Riemann hypothesis rest on common 

grounds. Not only do they rest on prime numbers, but furthermore the way in 

which they develop rests on similar principles. In order to understand these 

principles better, hesitantly (as I slowly came to understand the imposing 

reputation of the Riemann hypothesis) I entered the number theoretical realm 

from the vantage point of Recursive Perspectivism.  

The difficulty of understanding whole numbers is in their combined nature: 

structurally they are multiplications of prime numbers, and numerically they 

are ordered along the number line. Understanding the interplay between these 

two viewpoints, structure and content, offers a route to understanding and 

proving the Riemann hypothesis. I emphasize whole numbers while applying a 

recursive scheme in my proposal for a proof of the Riemann hypothesis, and I 

use clean, simple, ancient and well established mathematics in doing so. 

This would make my approach both elementary and recursive. I use entropic 

and annihilative arguments from physics. Mathematically I build on Pascal’s 

triangle, Newton’s binomial or combinatorial formula, Gauss’ normal 

distribution, Bernoulli experiments and the Mertens function. Be on guard 

when reading the paper: I am neither a mathematician nor a physicist. I do 

not claim a high or even a moderate level of proficiency in these fields. I 

therefore am prone to make errors, and to cut some corners. But even if 

these warnings would prove to be in due place, the following still would 

hold true. Pascal, Newton, Gauss, Bernoulli and Mertens offer an imposing 

foundation for Recursive Perspectivism and the discrete inversely 

proportional relationship that explains the many pattern laws we experience 

in “our environment”. The relations between the Riemann hypothesis, 

Recursive Perspectivism and societal innovation are important: for our 

further human development; for a sustainable, a better future. This is the 

reason why I entered number theory. Therefore I ask you to carefully read 

this paper, the presentation and the book. Thank you for your attention. 

Henk Diepenmaat 

This paper is based on The path of humanity: societal innovation for the word of 

tomorrow, Parthenon Publishers, Almere, The Netherlands (in press, 2018) 

mailto:henk.diepenmaat@actors.nl
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The Riemann hypothesis and the growth of the Mertens function   

The Riemann hypothesis is named after Bernhard Riemann, the German mathematician 

and philosopher (1826-1866) who rather casually mentioned it, and is generally stated in a 

complex number vocabulary:  

“All the nontrivial zeroes of the analytic continuation of the Riemann zeta function 

ζ have a real part equal to ½.” 

This hypothesis is deeply connected to the Mertens function (named after the German 

mathematician Franz Mertens, 1840-1927), a function built on the Möbius function and 

dealing with positive whole numbers (the realm of Recursive Perspectivism). The Möbius 

function μ(n) (named after the German mathematician August Ferninand Möbius, 1790-

1868) equals 1 for n=1, 0 for squared numbers (a squared number has at least one 

double prime factor), -1 for square-free numbers with an odd number of prime factors, 

and +1 for square-free numbers with an even number of prime factors.  

The Mertens function M(m) is the sum of the Möbius values (I will call this a “Sigma 

Möbius”, see further on) from 1 to m:   

 M(m) = Σ
n=1

m

 
μ(n) 

The Mertens function is shown below for m from 1 to 10.000 (left, source: Wikipedia) and 

for m from 1 to 10.000.000 (right, source: Wikimedia). Many people see merely noise. I 

however see a specifically interleaved binomial bell curve (see further). 

 

Edwards (1974, paragraph 12.1), following Littlewood, provides this connection by means 

of a direct equivalent of the Riemann hypothesis in terms of the Mertens function:  

“If M(x) = O(x
(½ + ε)

) is true with probability one, the Riemann hypothesis is true with 

probability one.” 

In order to prove the Riemann hypothesis, it would therefore suffice to prove that M(x) 

grows less rapidly than x
(1/2 + ε)

  for all ε > 0 (see Edwards paragraph 12.1). 

https://proofwiki.org/wiki/Definition:Nontrivial_Zero_of_Riemann_Zeta_Function
https://proofwiki.org/wiki/Definition:Analytic_Continuation
https://proofwiki.org/wiki/Definition:Riemann_Zeta_Function
https://proofwiki.org/wiki/Definition:Real_Part
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Denjoy’s probabilistic interpretation of the Riemann hypothesis  

As a result of the above, investigating the similarities between the Mertens function and a 

Bernoulli experiment (f.e. a coin tossing sequence) offers an intriguing possible pathway to 

proving the Riemann hypothesis. This is explained in Edwards (1974, paragraph 12.3): 

Denjoy’s probabilistic interpretation of the Riemann hypothesis, and I will follow this 

paragraph. In a Bernoulli experiment (for example a coin tossing sequence):  

“with probability 1 the number of Heads minus the number of Tails grows less rapidly 

than N
(1/2+ ε)

.” 

This is because of two reasons: 1) the probability of a Head equals the probability of a Tail 

and 2) the occurrence of Heads and Tails is independent of each other. 

Edwards then argues that it is not altogether unreasonable to assume that in the Mertens 

function the occurrence of μ(n) = +1 equals the occurrence of μ(n) = -1, and that 

occurrences of +1 and -1 are independent of each other. If, however, these two 

assumptions would apply, the conclusion would be that M(x) behaves exactly the same as 

a Bernoulli experiment. The equivalent statement of the Riemann hypothesis in terms of 

the Mertens function, at the start of this paper, would then be true. Prove these two not 

unreasonable assumptions, and you will have proven the Riemann hypothesis. This is 

called Denjoy’s probabilistic interpretation of the Riemann hypothesis (after the French 

mathematician Arnaud Denjoy).  

The Denjoy pathway, however, is dicey. Indeed, the Mertens function and a Bernoulli 

experiment are quite different, the book elaborates on this. The Mertens function on the 

one hand is completely determined: its graph will be the same over and over. In contrast 

to this, and on the other hand, each coin tossing sequence will show its own stochastic 

pathway, asymptotically bound by N(1/2+ ε) but resulting in quite a unique graph. 

Understanding their similarities is difficult. The Denjoy pathway is dicey indeed.  

Stieltjes and Mertens and the Sigma Möbius 

Notwithstanding this, the Dutch mathematician Thomas Joannes Stieltjes jr. (1856 - 1894) 

believed that the most fruitful approach to the Riemann hypothesis was through a study of 

the growth of M(x) as x -> ∞ (see Edwards, at the end of paragraph 12.1, for a historical 

account). Stieltjes made a stronger claim than the Riemann hypothesis: M(x)=O(x½), 

which would imply that M(x)/x½ remains bounded as x -> ∞. This would prove the 

Riemann hypothesis. Stieltjes mentioned that he had a proof, and this was generally 

believed (he was a respected mathematician). He never published such a proof though.  
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Stieltjes’ claim is weaker than Mertens conjecture, which states that |M(x)| < √x for all x 

> 1. Mertens’ conjecture therefore also would prove the Riemann hypothesis, but is 

believed to be disproven on the basis of extensive computations with the zeros of the zeta 

function by Andrew Odlyzko and Herman te Riele in 1985. Stieltjes’ claim was considered 

“highly unlikely” by Odlyzko and te Riele. 

Stochastics, interpretation, binomial patterns and annihilation  

Probabilistic coin tossing sequences and the completely determined Mertens function may 

not be equal, but their relations are intriguing nonetheless. In this section I will focus on 

stochastic (Bernoulli) experiments, for example coin tossing. In the next paragraph I will 

discuss the discrete inversely proportional relationship. In the paragraph after that I will 

shift attention to the Mertens function. 

Consider the following two statements. We already know: 

In a coin tossing sequence, with probability 1 the number of Heads minus the 

number of Tails grows less rapidly than N(1/2+ ε). 

Now I add the following statement: 

The average of an increasing number of sequences of p coin tosses will approach the 

binomial pattern of the n-th row of Pascal’s triangle better and better.  

The truth of the second statement rests on entropical foundations (Boltzmann) and 

annihilation (a physical concept). Take f.e. a sequence of 4 coin tosses (p=4). The table 

below shows all 16 possible sequences (from top to bottom, H=Head, T=Tail, 16 as 

2p=16).  

They are grouped together on the basis of the fractions of H and T. The percentages of H 

linearly develop as 100% 75% 50% 25% 0% (from left to right), and the percentages of T 

therefore develop exactly the other way around: 0% 25% 50% 75% 100%. 

100      75            50             25       0    % H 

 

 H     T H H H     H T H T H T     H T T T     T 

 H     H T H H     H T T H T H     T H T T     T 

 H     H H T H     T H T H H T     T T H T     T 

 H     H H H T     T H H T T H     T T T H     T 

 

 0       25            50             75      100  % T 

 

 1       4             6              4        1   (group size, 

                    4-th row Pascal) 
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Boltzmann and Pascal. This fraction is (these percentages are) a discriminating feature 

of a sequence of 4 coin tosses as a whole: the sequences may be different from a 

microscopic view, but they are the same from this macroscopic view (a Boltzmannian 

argument). This is the argument for the grouping together: for example from the 

macroscopic point of view of the percentage H or T, the sequences HTTT, THTT, TTHT and 

TTTH are not different, they are simply the same: they contain 25% H and 75% T. As a 

result, the occurrence of these percentages will follow the fourth row of the well-known 

Pascal’s triangle: 1 4 6 4 1 (see the group sizes and the figure below). This is an 

application of the Boltzmann principle.  

 

… 1 …     row 0 

… 1  1 …     row 1 

… 1  2  1 …     row 2 

… 1  3  3  1 …  row 3 

… 1  4  6  4  1 …     row 4 

… 1  5  10 10  5  1 …     row 5 

… 1  6  15  20  15  6  1 …     row 6 

… 1  7  21  35  35  21  7  1 …     row 7 

… 1  8  28  56  70  56  28  8  1 …     row 8 

 

 

Annihilation. The number of Heads minus the number of Tails grows less rapidly than 

N
(1/2)+ε

. This can be seen as the result of annihilation in the p=4 world: an excess of 

patterns, take THHH (the first pattern of the first group of 4) is annihilated (destroyed, 

made undone) by other patterns, for example the “inverse” pattern HTTT (the first pattern 

of the second group of 4), vice versa. Any pattern of the first group of 4 would be 

annihilated by any of the patterns of the second group of 4. Likewise, an excess of H 

resulting from HHHH would be completely annihilated by one pattern TTTT, or by any four 

consecutive patterns of the second group of 4. For entropical reasons, repeating a 

sequence of four coin tosses would approach the fourth row 1 4 6 4 1, and therefore would 

seek balance as a result of this annihilation (Societal balance is the central theme of the 

book. See an internet simulation of a Galton Board for an empirical demonstration of 

balance seeking.)   

Note that the six patterns with 50% H and 50% T in the middle would not change an 

excess number of H and T (or destroy an existing balance). If p is even, the middle group 

does not matter in this respect, not unlike squared prime factorizations do not matter in 

the Mertens function. If we would increase the to be repeated sequence of coin tosses to 

p=5, the fifth row of Pascal’s triangle would be the goal the repetition is seemingly aiming 

for: 1 5 10 10 5 1 (and 25=32): 
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100     80         60            40        20     0    % H 

 

 H     THHHH   TTTTHHHHHH    HHHHTTTTTT   HTTTT     T 

 H     HTHHH   THHHTTTHHH    HTTTHHHTTT   THTTT     T 

 H     HHTHH   HTHHTHHTTH    THTTHTTHHT   TTHTT     T 

 H     HHHTH   HHTHHTHTHT    TTHTTHTHTH   TTTHT     T 

 H     HHHHT   HHHTHHTHTT    TTTHTTHTHH   TTTHT     T 

 

 0      20         40            60         80      100   % T 

 

 1       5         10            10          5        1  (group size, 

                              5th row of  

                                                             Pascal’s  

                                                             triangle) 

Merely a matter of interpretation? But repeating a sequence of p coin tosses over and 

over, say m times, results in a sequence of N=p.m coin tosses. Whether we prefer to look 

at coin tosses as m times a sequence of p coin tosses, or as only one long sequence of N 

single coin tosses in a row, or as one massive parallel throw of N dice at the same time 

(here we touch upon the ergodic hypothesis), merely is a matter of interpretation: the to 

be executed individual coin tosses will not be influenced, and the actually resulting coin 

tosses do not change “objectively” when they are being looked at differently. This is 

because of the two reasons mentioned before: 1) the probability of a Head equals the 

probability of a Tail and 2) the occurrences of Heads and Tails are independent of each 

other. These interpretations are exactly the same, providing that N=p.m. 

The discrete inversely proportional relationship: two viewpoints 

The formula N=p.m implies that p and m are exactly discretely inversely proportional with 

respect to N. Therefore, if we would divide the length of a fixed to be repeated sequence 

of coin tosses (p) by 2 (or 3 or 4 or …), we would have to multiply the number of 

repetitions of this sequence of coin tosses (m) by 2 (or 3 or 4 or …), in order to maintain 

the same bound N(1/2+ ε)= (p.m) (1/2+ ε).  

Conversely: if we would multiply the length of a fixed to be repeated sequence of coin 

tosses (p) by 2 (or 3 or 4 or …), we would have to divide the number of repetitions of this 

sequence of coin tosses (m) by 2 (or 3 or 4 or …), in order to maintain the same bound 

N(1/2+ ε)= (p.m) (1/2+ ε).  

For example: 100 repetitions of a sequence of 4 throws would amount to the same whole 

as 200 repetitions of a sequence of 2 throws, or 400 single throws, or 50 repetitions of a 

sequence of 8 throws. Here all possible whole number interpretations (solutions) of 

m.p=400 are presented: 
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m.p=400 

 

400.1 200.2 100.4 80.5 50.8 25.16 16.25 8.50 5.80 4.100 2.200 1.400 

There remains, however, one important difference between N and p.m. One long row of 

single coin tosses can have any arbitrary length, whereas a repetition of a sequence of p 

(let’s say 4) coin tosses must result in N being a p-fold (a fourfold in the example). As long 

as N=p.m, this does not matter. If p would be four, we might throw one coin 400 times, or 

4 coins 100 times (see the possibilities, the factors, above). In all other cases (so if 

N=/p.m) a nearby N would not be exactly the same as p.m.  

Different possibilities now exist.  

If m >> p, the difference between N and p.m would disappear almost completely. If p is 

fixed, and m is getting larger and larger than n, the difference would dwindle away. We 

may use N as a better and better substitute for p.m, and therefore use N(1/2+ ε) as a better 

and better substitute for (p.m) (1/2+ ε). (From a philosophical point of view, for a growing m 

ultimately an illusion of objective reality would emerge, see the book.) 

If m is getting equal to p (coming from above), using N(1/2+ ε) as a substitute would 

become more and more subjective and error-prone. If m << p, this ultimately would result 

in complete uncertainty.  

We may look at this in two different ways: from a statistical point of view, outside-in, by 

focussing on repetitions, and from a combinatorial point of view, inside-out, by analysing 

the variability of the repeated pattern. 

From a statistical point of view (the first viewpoint, outside-in), in a stochastic process like 

a coin tossing, in order for the boundary N(1/2+ ε) to be valid, the number of repetitions m 

must be sufficiently large with respect to the variability in the to be repeated pattern 

specified by p. We may become more and more confident that this is the case if a certain 

balance is emerging. 

According to combinatorial (entropic, statistical thermodynamic) rules, this variability 

within a repeated combinatorial pattern specified by p is governed by Pascal’s triangle (the 

second viewpoint, inside-out). If the to be repeated pattern with p=n would not show any 

variability whatsoever, in other words it is completely predetermined and 100 % known, 

repetition would not be of any help in getting to know this variability any better. If this 

variability would follow a row of Pascal’s triangle, repetition would not show any 

convergence towards the rows of Pascal’s triangle, but would just show this row pattern 

exactly. Dividing by the number of repetitions would just exactly result in the row itself, 

after 1, 2, 3 or any number of repetitions.  
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Consider a dice being thrown only once in front of someone not familiar with dice: this 

would not result in much insight. And now consider that all the many red dice encountered 

so far would have six times the number 1 on it. Merely seeing its colour would specify all 

possible future outcomes of throwing a red dice. Throwing a red dice would result in 1, and 

therefore the very throw itself would become redundant; obsolete. From a philosophical 

point of view, this is the way in which a sense of a persistent environment emerges (both 

physical and mental). I do not need to check whether my front door is still there, when 

sitting in my living room, and neither does my wife. I might have to check, though, 

whether my bicycle still is there. (See also the black swan of Karl Popper.)  

Mertens function, primorials, the function fp and binomial patterns 

Now let us look at the Mertens function, bearing these two viewpoints in mind. Unlike coin 

tossing, the Mertens function is not stochastic, but completely determined. Each of the 

Bernoulli experiment and the Mertens function adheres to one of the the viewpoints. 

Although the development of the Mertens function therefore cannot equal coin tossing, 

Heads and Tails are not completely unlike “even” and “odd” square-free numbers (i.e. 

square-free numbers with an even or an odd number of prime factors).  

For the Mertens function we know: 

If M(x) = O(x(1/2+ ε)) is true with probability one, the Riemann hypothesis is true with 

probability one. 

In the case of a Bernoulli experiment like a coin tossing sequence, we know: 

With probability 1 the number of Heads minus the number of Tails grows less rapidly 

than N(1/2+ ε). 

A Bernoulli experiment belongs to the outside-in viewpoint: repeating a process results in 

insight into the stochastic variability of this process. When throwing a sequence, we will 

never know this variability for sure (for the complete 100 %), but we may be confident 

that the number of Heads minus the number of Tails grows less rapidly than N(1/2+ ε). 

The Mertens function, on the other hand, takes an inside-out viewpoint, as its variability is 

completely determined. We may be sure that the Mertens function will result in exactly the 

same graph, over and over, for however large an x we may continue calculating Mertens 

values.  

Primorial numbers and primorial sequences. These two features can be brought into 

coherence by means of the primorial sequence. By consecutively extending the prime 

factorization with the next prime number in line, starting at 1, we create this primorial 
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sequence (see below). One such an extension I call a primorial step (primorial restrictions 

would go the other way around). Primorial steps result in the next primorial number, and 

realise the primorial sequence: (1,) 2, 6, 30, 210, 2310, … .  

 2 

 6=(2 3)         2.3=6 

 30=(2 3 5)         2.3.5=30  

 210=(2 3 5 7)        2.3.5.7=210 

 2310=(2 3 5 7 11)   2.3.5.7.11=2310  

 Et cetera. 

By following the primorial sequence, we are sure not to skip any prime numbers (as all the 

prime numbers so far are being covered). We also are sure not to introduce squared 

factors (in a primorial number all prime factors are different, a primorial number therefore 

cannot have a squared factor).  

The function fp. Because of the square-free nature of primorial numbers (duplicate prime 

factors are completely absent) we can use the combinatorial function for the binomial 

coefficients (Newton’s binomial theorem) to calculate the number of factors of a primorial 

number consisting of k of the p prime factors. If any set has p different elements, the 

number of different combinations for each k is equal to the binomial coefficient: 

Comb (p, k) = p! / k!(p-k)!  

Take for example a set of three different fruits: an apple, a banana and an orange. The 

possibilities to select different sets of 2 are: (apple banana), (apple, orange), (banana, 

orange), so three different sets. This number of different sets of two out of these three 

fruits can be calculated using the combinatorial formula: 

Comb (3, 2) = 3! / 2!1! = 3 

In order to show the way in which this is intimately related to Pascal’s Triangle and the 

binomial bell curve, I use a function fp. This function calculates the number of all 

possibilities consisting of k elements, k going from 0 to p, and adds them together: 

f
p
 =  

Comb (p, 0) +     (k=0) 
Comb (p, 1) +     (k=1) 
Comb (p, 2) +     (k=2) 
…                +     (k=..) 
Comb (p, p)    (k=p) 

More concisely: 
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 f
p
 =  Σk

0->p
 Comb (p, k)    

Note that Comb (p, 0) results in 1 as the possibility of taking none of the set members 

exists. Similarly also Comb (p, p) will result in 1, as there is only one way to include all the 

elements of an unordered set.  

This is a convenient function, as writing out all the subsets is rather cumbersome when p 

is large. Actually this is quite an understatement: the total number of subsets becomes 

astonishing for large p’s. See the p=120 example on the next page: the added result (the 

sum value) is 2120= 1329227995784915872903807060280344576, an enormous amount. 

It doesn’t matter whether it concerns 120 different types of fruit, 120 different types of 

cars, or 120 different prime factors. The p members constituting the set must be different, 

in the sense of being distinguishable from each other in the Boltzmannian macro sense. 

Under this condition he resulting pattern will follow the p-th row of Pascal’s triangle (the 

left part of the large picture below is calculated by means of fp for p=120, and therefore 

results in the 120-th row of Pascal’s triangle), and the result will be a binomial bell curve. 
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Recursive Perspectivism and Pattern laws. Note that for large p the corresponding 

row of Pascal’s triangle shows a logarithmic pattern (see the left part of the figure above), 

that is reminiscent of both the configurational entropy when mixing two ideal gasses in 

chemistry, and Shannon’s information entropy in information technology (see figure 

below). These two entropy curves use the natural log “ln” though; using the natural log 

instead of a base 10 log on the binomial curve would result in an “entropical” pattern left 

of the binomial curve in the picture above as well.  

In the book, the rather intriguing notions of a societal entropy and a societal balance are 

introduced using the same principles, using perspectives as recursive atomic elements. 

This results in a societal balance model (see the third curve in the figure below). The 

entropic patterns are similar and for a large value for p become more and more the same 

in quite different activities of human endeavour (natural science, psychology, social 

science  and the largest human activity: society as a whole). These patterns rest on 

Recursive Perspectivism. Recursive Perspectivism is inherently discrete in nature 

(perspectives are recursive quants), but high p’s will result in a “continuous illusion” for 

pragmatic reasons. “The path of humanity”, the title of the book, is the largest entropical 

pattern of all. One of the most intriguing aspects of Recursive Perspectivism is that it 

explains the many mysterious pattern laws that we experience as human beings, on the 

basis of prime numbers: Zipf’s Law, Benford’s Law, the Pareto principle, the economic law 

of diminishing returns, the economic distribution of wealth (Piketty), the different 

economic cycles, natural scientific laws and many more. They all obey the entropic rules 

and the discrete inversely proportional relationship, and the higher p (the more complex), 

the better. Recursive Perspectivism offers an Archimedean point that enables overseeing, 

understanding and explaining these pattern laws, and therefore functions as a unifying 

philosophy. (See the book). 
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Gas 1 left

Gas 2 right

Gas 2 left

Gas 1 right

Configurational

entropy
Gas 1 and Gas 2

perfectly mixed

Alll Heads All Tails

Information

entropy
Head and Tail

in perfect balance

Entropy macro state level = ln (number of micro states)

Thinking completely

of yourself

Thinking completely 

of others

Societal

entropy

People

in perfect balance

(the societal optimum)

Social 

Improvement 

Spiral

Egoistic 

Trap

Emancipatory

Improvement 

Spiral

Altruistic

Trap

The societal balance model

(see "The path of humanity")

 

fp counts factors. When using fp for combining prime factors of a primorial number, 

multiplication of the resulting sets of prime factors will result in the factors of this primorial 

number. Primorial steps double the number of factors, as this number equals 2p and each 

step increases p by 1. The new factors resulting from a primorial step will be added, and 

are completely scale invariant with respect to the already existing factors of the former 

step, as the new factors simply are the old factors multiplied by the newly added prime 

factor. This also implies that already existing factors with an odd number of prime factors 

will be 1-1 accompanied by factors with an even prime factorization, vice versa. As a 

consequence, the ratio between factors with an odd and an even prime factorization will 

remain exactly 50%-50%. For example: stepping from 6=(2 3) to 30=(2 3 5) extends the 

four factors (1 2 3 6) of 6 with the four factors (5 10 15 30), their value is exactly five 

times (the newly added prime factor) the existing ones, resulting in eight factors: (1 2 3 5 

6 10 15 30). The old factors in terms of their number of prime factors were: odd, odd, 

odd, even; whereas the new factors are: odd, even, even, even, resulting in an equal 

amount again. The discrete inversely proportional relationship of the new primorial number 

n=x.y will provide the necessary and sufficient whole number positions for these factors, 

as before: (1 30)(2 15)(3 10)(5 6)(6 5)(10 3)(15 2)(30 1). 

Primorial steps merge the two viewpoints. Primorial steps exhibit both features (both 

viewpoints) mentioned earlier. They exhibit the notion of repetition that is present in a 
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Bernoulli experiment (f.e. coin tossing), as the same procedure is repeated over and over. 

Primorial steps also exhibit the notion of a completely determined variability with 

respect to factors, inherent to combinatorial patterns, as steps are completely determined: 

a step simply adds (includes) the existing primorial factors, each of them multiplied by the 

newly added prime number, in a perfectly scale invariant and Möbius inverse way. 

Primorial steps therefore combine both viewpoints of above, the one dealing with 

repetition and the one dealing with a determined variability. 

Primorial steps and Pascal’s triangle. Primorial steps change factors both in terms of 

distribution over k ranges (binomial structure) and in terms of relative order (position) on 

the whole number line (numerical content). See the three consecutive primorial numbers 

below. Stepping up is from 210 to 2310 to 30300, stepping down is the other way around. 

The new factors due to primorial steps down are in italics and underscored. Note that while 

adding or deleting factors, the steps nicely obey the rows of Pascal’s triangle in binomial, 

structural terms. Also note the symmetries exhibited in these structural patterns of factors 

(they are rather hidden on the number line due to interleaving, the presence of squared 

numbers and the presence of “strange” square-free numbers, see the presentation and the 

book, but also see further).  

210=(2.3.5.7) p=4 

k=0 =>  1     (1)                            

k=1 =>  4     (2 3 5 7)    

k=2 =>  6     (6 10 14 15 21 35)   

k=3 =>  4     (30 42 70 105)    

k=4 =>  1     (210) 

 

                                                                

2310=(2.3.5.7.11) p=5                                               

                                                                    

k=0 =>  1     (1)                                                      

k=1 =>  5     (2 3 5 7 11)                                     up: +1   down: -1 

k=2 =>  10    (6 10 14 15 21 22 33 35 55 77)                   up: +4   down: -5 

k=3 =>  10    (30 42 66 70 105 110 154 165 231 385)            up: +6   down: -10 

k=4 =>  5     (210 330 462 770 1155)                           up: +4   down: -10 

k=5 =>  1     (2310)                                           up: +1   down: -5 

                                                                        down: -1 

                                                                              

30030=(2.3.5.7.11.13) p=6                                                      

 

k=0 =>  1     (1)                           

k=1 =>  6     (2 3 5 7 11 13) 

k=2 =>  15    (6 10 14 15 21 22 26 33 35 39 55 65 77 91 143) 

k=3 =>  20    (30 42 66 70 78 105 110 130 154 165 182 195 231 273 286 385 429 455 715 1001) 

k=4 =>  15    (210 330 390 462 546 770 858 910 1155 1365 1430 2002 2145 3003 5005) 

k=5 =>  6     (2310 2730 4290 6006 10010 15015) 

k=6 =>  1     (30030) 

 

The Sigma Möbius, Interleaving, Sawtooths and structure-content games 

Binomial patterns can be represented in a graphical way, using what I call a Sigma 

Möbius. A Sigma Möbius simply is an addition of the values of the Möbius function over a 

specified set of whole numbers. Note that this makes the Mertens function M(m) a specific 
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type of Sigma Möbius: the Sigma Möbius over the range of consecutive numbers from 1 to 

m. 

Sawtooths. I am especially interested in the Sigma Möbius over the factors of a primorial 

number. If I represent the Sigma Möbius over the factors of a primorial number, for 

example the p=5 primorial number 2310=(2 3 5 7 11), or the p=6 30030=(2 3 5 7 11 

13), and I strictly follow the binomial pattern (the corresponding row of Pascal’s triangle, 

the order of the k-ranges), a specific graph results: I call it a Sawtooth (see below). 

 

We do not need to know the specific value of the prime factors. The number (amount) of 

them in combination with the requirement  of being different suffices. This Sawtooth 

pattern will be exactly the same for any square-free number with the same number of 

prime factors p (5 and 6 in the example Sawtooth graph), or p different fruits, or 

whatever. For example, the p=3 primorial Sawtooth of (2 3 5) is exactly the same as the 

Sawtooth of (2 7 17) or the fruits (apple pear banana). 

Note the different types of symmetry for Sawtooths: for p=odd, f.e. 5, a mirror symmetry 

with respect to the middle line is the result, and for p=even, f.e. p=6, a 180 degrees 

rotational symmetry with respect to the point in the middle is the result. 

Interleaving and the whole number line. In case of a Sawtooth graph of a square-free 

number, the x-axis is not a regular whole number line. Not only will gaps manifest 
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themselves in between the factors (these factors will be different for different prime 

factors), but in addition different k-ranges in many cases may (and in case of primorial 

numbers with p > 3 will) interleave. See for example the factors of the p=4 primorial 

number, 210=(2 3 5 7), in the order of their binomial pattern (i.e. starting with k=0 and 

ending with k=3). They do not constitute a well ordered number line: 

k=0   k=1          k=2             k=3       k=4 

(1)(2 3 5 7)(6 10 14 15 21 35)(30 42 70 105)(210)       

Gaps will manifest themselves. In addition to this, and moreover, when ordering the 

factors according to the number line, the k=2 6 will take precedence over the k=1 7. 

Likewise, the k=2 35 will give precedence to the k=3 30. The k-ranges of concern 

interleave, and as a result the order will not be numerical (content) but binomial 

(structural). These interleaving processes will be exactly symmetrical, due to the 

underlying binomial structure and according to the symmetry present in their Sawtooth. 

They result in a numerical order. Interleaving therefore turns the factors, arranged 

according to the k-ranges of the binomial pattern (structure): 

1 2 3 5 7 6 10 14 15 21 35 30 42 70 105 210  (structural order) 

0 1 1 1 1 2  2  2  2  2  2  3  3  3   3   4  (k’s are ordered)      

 into the range of factors, ordered according to the number line (content): 

1 2 3 5 6 7 10 14 15 21 30 35 42 70 105 210  (numerical order) 

0 1 1 1 2 1  2  2  2  2  3  2  3  3   3   4  (k’s are unordered)      

We can see clearly now that the factors of the primorial number 210 occupy all the 16 (as 

24=16) whole number blocks on the inversely proportional line n=x.y, both as x-value and 

(in reversed order) as y-value, as they are numerically ordered, for all these positions 

their product equals n, and none are missing: 

1   2   3  5  6  7  10 14 15 21 30 35 42 70 105 210       

210 105 70 42 35 30 21 15 14 10 7  6  5  3  2   1       

Factors of squared numbers. The formula 2p for the number of factors holds true for 

any square-free number (or for any set of p distinguishable entities). For a squared 

number, however, the number of factors (the number of blocks on n=x.y) will be less due 

to double factors in the binomial expansion according to fp (duplicates do not count). See 

the example of 45=(3 3 5) below, a squared number of p=3. A square-free p=3 number 

would result in 8 factors, but the squared number 45 has only 6 different factors due to 

indistinguishable duplicates (a Boltzmannian argument).  
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45=(3 3 5), p=3 => k=3 

 

k=0 => 1 (1)    1 

k=1 => 3 (3 3 5) => (3 5)  2 

k=2 => 3 (9 15 15) => (9 15) 2 

k=3 => 1 (45)     1 

 

Factors: (1 3 5 9 15 45) 

The Sawtooth of the squared p=3 number 45 will be symmetrical as before (although it 

will be shorter than a square-free p=3 number, and with smaller teeth), and the blocks 

will occupy all the available whole number positions on n=x.y as before. The row 1 2 2 1, 

however, cannot and does not exist in Pascal’s triangle. Pascal’s triangle is about 

combinations of sets without duplicate members, which in the case of prime factorizations 

amounts to square-free numbers. Squared numbers can never be equal to square-free 

numbers, vice versa, as is proven by the fundamental theorem of arithmetic, also known 

as the unique-prime-factorization theorem.  

Together the squared and the square-free numbers constitute all the numbers on the 

positive whole number line. This implies that squared numbers would fill in “missing 

symmetrical rows” of Pascal’s triangle (the triangle is repeated below for convenience). 

Take for example all p=3 possibilities. They are (the order within the patterns does not 

matter, and the letters may be substituted with anything at all, including prime factors, 

the only requirement is that the patterns remains itnact): 

AAA    3:0  (all elements are the same, f.e. (3 3 3)) 1 1 1 1 

AAB    2:1  (one pair and a single one, f.e. (2 3 3)) 1 2 2 1 

ABC    1:1:1   (all three different, f.e. (2 3 5), row 3) 1 3 3 1 

… 1 …     row 0 

… 1  1 …     row 1 

… 1  2  1 …     row 2 

… 1  3  3  1 …  row 3 

… 1  4  6  4  1 …     row 4 

… 1  5  10 10  5  1 …     row 5 

… 1  6  15  20  15  6  1 …     row 6 

… 1  7  21  35  35  21  7  1 …     row 7 

… 1  8  28  56  70  56  28  8  1 …     row 8 

 

Al the p=5 possibilities, both with duplicates (“squared” in case of p=5 numbers) and 

without duplicates (“square-free” in case of p=5 numbers, but five different types of fruit 

would do as well) are: 

AAAAA  5:0   (all the same)    1 1 1 1 1 1 

ABBBB 4:1  (one and four the same)   1 2 2 2 2 1 

AABBB 2:3  (a pair and three the same)  1 2 3 3 2 1  

ABCCC 1:1:3   (two different and three the same) 1 3 4 4 3 1 

AABCC 1:2:2  (one and two different pairs)  1 3 5 5 3 1 

AABCD 2:1:1:1  (a pair and three different ones) 1 4 7 7 4 1 

ABCDE  1:1:1:1:1  (all five are different, row 5)  1 5 10 10 5 1 
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Consider the examples below: 2310, 3125, 6875, 72, 945, 300 and 420, all p=5 numbers 

but squared differently (2310 is primorial and therefore square-free). For the squared 

numbers, the actual number of factors will be less than 25, as many double factors will be 

present in the binomial expansion according to fp. According to the Boltzmann principle, (2 

2) and (2 2) cannot be distinguished on the macro level as their product is the same, they 

are also indistinguishable on the micro level. However, also microscopically different 

products like (2 5) and (5 2), or (2 2 5) and (5 2 2) and (2 5 2) cannot be distinguished 

from each other on the macro (the factor) level, as their product is exactly the same. 

Therefore the number of factors reduces in a predictable, but also complex and somewhat 

surprising way. See for example the first k=2 factor of 420, this is 4=(2 2). This factor 

seems to emerge1 quite unexpectedly, as on the k=1 range of 420 only one 2 is to be 

found. The k=2 factors are calculated on the basis of combining all the original prime 

factors in sets of 2, and not on combining the k=1 factors only. After this combination, the 

factors are calculated and the double ones are removed. (Mind however that from a 

recursive perspectivistic point of view one should expect the probability of these 

configurations with “hidden support” to be proportionally higher due to “independent 

fundaments” (“independent origins”, or perhaps is “independent causations” a better term 

here): they are more likely to emerge. 

n=2310 primes: (2 3 5 7 11) p=5 => k=5  The p=5 primorial number 

Factors do not need to be corrected: the primorial number is square-free 

k=0 =>  1     (1)                               

k=1 =>  5     (2 3 5 7 11)                                      

k=2 =>  10    (6 10 14 15 21 22 33 35 55 77)                    

k=3 =>  10    (30 42 66 70 105 110 154 165 231 385)             

k=4 =>  5     (210 330 462 770 1155)                            

k=5 =>  1     (2310)  

                                           

n=3125 primes: (5 5 5 5 5), p=5 => k=5 

Factors corrected: 

k=0 =>  1     (1) 

k=1 =>  1     (5) 

k=2 =>  1     (25) 

k=3 =>  1     (125) 

k=4 =>  1     (625) 

k=5 =>  1     (3125) 

 

n=6875 primes: (5 5 5 5 11), p=5 => k=5 

Factors corrected: 

k=0 =>  1     (1) 

k=1 =>  2     (5 11) 

k=2 =>  2     (25 55) 

k=3 =>  2     (125 275) 

k=4 =>  2     (625 1375) 

k=5 =>  1     (6875) 

 

n=72 primes: (2 2 2 3 3), p=5 => k=5 

Factors corrected: 

k=0 => 1   (1) 

k=1 => 2      (2 3)  

k=2 => 3      (4 6 9)  

k=3 => 3      (8 12 18) 

k=4 => 2      (24 36)  

k=5 => 1      (72) 

                                           

1 See “emerging and vanishing properties” in my thesis. 
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n=945 primes: (3 3 3 5 7), p=5 => k=5 

Factors corrected: 

k=0 =>  1     (1) 

k=1 =>  3     (3 5 7) 

k=2 =>  4     (9 15 21 35) 

k=3 =>  4     (27 45 63 105) 

k=4 =>  3     (135 189 315) 

k=5 =>  1     (945) 

 

n=300 primes: (2 2 3 5 5), p=5 => k=5 

Factors corrected: 

k=0 =>  1     (1) 

k=1 =>  3     (2 3 5) 

k=2 =>  5     (4 6 10 15 25) 

k=3 =>  5     (12 20 30 50 75) 

k=4 =>  3     (60 100 150) 

k=5 =>  1     (300) 

 

n=420 primes: (2 2 3 5 7), p=5 => k=5 

Factors corrected: 

k=0 =>  1     (1) 

k=1 =>  4     (2 3 5 7) 

k=2 =>  7     (4 6 10 14 15 21 35) 

k=3 =>  7     (12 20 28 30 42 70 105) 

k=4 =>  4     (60 84 140 210) 

k=5 =>  1     (420) 

Ordered sawtooths. Now let us redirect our attention to the interleaving of square-free 

numbers, and primorial numbers as a special case. Consider the following five p=4 square-

free example numbers (the fifth is the p=4 primorial number, 210):  

8756100193  =(293 307 311 313) 
46189  =(11 13 17 19) 
1938  =(2 3 17 19) 
462   =(2 3 7 11) 
210   =(2 3 5 7) (the p=4 primorial number) 

The number of factors must be the same in all cases: 24=16, as they are all square-free 

p=4 numbers. Their Sawtooths, a structural effect, should therefore be exactly the same 

as well (as of course they are). Their interleaving however is different. The level of 

interleaving is a complex stepwise process, depending on the relative size (the relative 

order of magnitude) of the prime factors of a number of concern, as all factors are 

products of these prime factors. Interleaving therefore is a typical content related binomial 

effect, belonging to numbers (f.e. fruits do not interleave). The relative order of magnitude 

of the prime factors of the five example numbers is quite different. If we would order their 

factors according to the number line, and only after that draw the Sigma Möbius of these 

factors, we would take into account the interleaving. The x-axis now is ordered according 

to the number line. If interleaving is present, the resulting Sawtooth will readily show this 

as a deviation, an exchange of places with respect to the ideal binomial Sawtooth. The 

resulting graphs I therefore call Ordered Sawtooths, as in an Ordered Sawtooth the factors 

are interleaved if required. They are ordered according to the number line. This in contrast 

with the normal or binomial Sawtooths, these simply and blindly follow the binomial 

pattern of the row of Pascal of concern.  
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Interleaving cannot shorten a Sawtooth (as squares do): factors are changing place, 

rather than vanishing2. This may seriously destroy the sharp teeth of the “ideal” binomial 

Sawtooth pattern according to the rows of Pascal’s triangle, as especially the points of the 

Sawtooth teeth are most prone to interleave: they represent the beginnings and ends of 

the different k-ranges. The Ordered Sawtooths of the five p=4 square-free numbers are 

presented below, at right is the p=4 primorial number, 210.   

 

In order to be able to better analyse what is happening, I present the binomial expansion 

of the factors of the five numbers and their interleaving as well (see next page). For 

8756100193 the factors within the different k-ranges seem to flock together, as a direct 

consequence of their prime factors (293 307 311 313) being highly similar (content). For 

46189=(11 13 17 19) this flocking together is still apparent, but less severe, interleaving 

still is absent. For 1938=(2 3 17 19), the interleaving starts as the prime factors are 

sufficiently different: the k=2 factor 6 is smaller than the k=1 factors 17 and 19 (k=1 

                                           

2 See “emerging and vanishing properties” in my thesis. 
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numbers are the prime factors). As a consequence of the symmetry of this process, the 

k=2 factor 323 must be larger than the k=3 factors 102 and 114. (Again, many 

symmetries show themselves). For 462=(2 3 7 11) the structure of this interleaving is 

exactly the same as for 1938, although the position of the factors on the number line, 

their content, is quite different. Apparently, the prime factor ratio boundaries resulting in a 

different interleaving pattern are not violated.  For the primorial number 210=(2 3 5 7), 

the interleaving changes again. In this case, the flocking together of factors is minimal: 

the factors are spread as good as possible on the line 210=x.y. For a primorial number, all 

possible whole number positions are in use. Remember: as a primorial number is square-

free, also the number of factors is at a maximum for p=4. The primorial number therefore 

combines the optimal spread with the optimal number of factors, while using a minimal 

number of perspectives, from the vantage point of Recursive Perspectivism. An imposing 

structure-content game is at play. 

n=8756100193 primes: (293 307 311 313), p=4 => k=4 

 

factors: 

k=0 =>  1     (1) 

k=1 =>  4     (293 307 311 313) 

k=2 =>  6     (                 89951 91123 91709 95477 96091 97343) 

k=3 =>  4     (                             >> 27974761 28154663 28521499 29884301) 

k=4 =>  1     (                                                          >> 8756100193) 

 

 

n=46189 primes: (11 13 17 19), p=4 => k=4 

 

factors: 

k=0 =>  1     (1) 

k=1 =>  4     (11 13 17 19) 

k=2 =>  6     (            143 187 209 221 247 323) 

k=3 =>  4     (                                    2431 2717 3553 4199) 

k=4 =>  1     (                                                        46189) 

 

n=1938 primes: (2 3 17 19), p=4 => k=4 

 

factors: 

k=0 =>  1     (1) 

k=1 =>  4     (2 3   17 19) 

k=2 =>  6     (    6        34 38 51 57          323) 

k=3 =>  4     (                          102 114      646 969) 

k=4 =>  1     (                                                1938) 

 

n=462 primes: (2 3 7 11), p=4 => k=4 

 

factors: 

k=0 =>  1     (1) 

k=1 =>  4     (2 3   7 11) 

k=2 =>  6     (    6      14 21 22 33         77) 

k=3 =>  4     (                        42 66      154 231) 

k=4 =>  1     (                                           462) 

 

n=210 primes: (2 3 5 7), p=4 => k=4 

 

factors: 

k=0 =>  1     (1) 

k=1 =>  4     (  2 3 5   7) 

k=2 =>  6     (        6   10 14 15 21    35) 

k=3 =>  4     (                        30     42 70 105) 

k=4 =>  1     (                                          210) 
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From the vantage point of Recursive Perspectivism, we may interpret this wish for filling 

the inversely proportional line n=x.y as effectively and efficiently as possible, as a high 

potential fitness. A high configurability of perspectives of concern amounts to a potentially 

high efficaciousness. Primorial numbers of perspectives exploit this configurability to its 

maximum: blocks are spread optimally, and the number of factors is at its maximum for 

this number of perspectives. Recursive Perspectivism appreciates a level of configurability 

as high as possible, for a number of perspectives as limited as possible, as a high aptness 

for creating value (for realising improvement potential). The book elaborates on this. 

Boundaries of k-ranges of primorial numbers. The interleaving of the k-ranges of 

primorial numbers is limited by well-defined boundaries. These boundaries find their origin 

in the prime factors of the primorial numbers. In order to appreciate this better, firstly 

look at the repeated k-factors of the p=6 primorial number 30030=(2 3 5 7 11 13) below, 

and especially the underlined factors at the beginning of the k-ranges: 2 6 30 210 2310 

30030. They constitute the primorial sequence. They provide the boundaries for higher k-

ranges to interleave to the left on the number line. The k=2 range, for example, starting 

with 6, cannot interleave further to the left than position 6 at the number line, and the 

k=5 range has an interleaving boundary of 2310. 

factors: 

k=0 =>  1     (1) 

k=1 =>  6     (2 3 5 7 11 13) 

k=2 =>  15    (6 10 14 15 21 22 26 33 35 39 55 65 77 91 143) 

k=3 =>  20    (30 42 66 70 78 105 110 130 154 165 182 195 231 273 286 385 429 455 715 1001) 

k=4 =>  15    (210 330 390 462 546 770 858 910 1155 1365 1430 2002 2145 3003 5005) 

k=5 =>  6     (2310 2730 4290 6006 10010 15015) 

k=6 =>  1     (30030) 

Secondly and likewise, look at the underlined factors at the end of the k-ranges. They 

constitute the “inverse” of a primorial sequence. They provide the boundaries for lower k-

ranges to interleave to the right on the number line. The k=2 range, for example, ending 

with 143, cannot interleave further to the right than position 143 at the number line, 

13  

143 = 13.11  

1001 = 13.11.7  

5005 = 13.11.7.5  

15015 = 13.11.7.5.3 and  

30030 = 13.11.7.5.3.2  

The ranges open up at 1 for k=0, and close down at 300030 for k=p, as 2.3.5.7.11.13 = 

13.11.7.5.3.2. A primorial sequence follows a recursive process: the boundaries therefore 

will apply recursively as well. For each primorial step the interleaving effects are bounded 
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as described above, and therefore local in this specific sense. Interleaving is limited in a 

strict and formal way 

The magnificent x½. Half of all the factors of a primorial number will be below x½, the 

other half will be above x½, as a consequence of the discrete inversely proportional 

relation and the resulting diagonal symmetry in the corresponding  black blocks figure. For 

example, for 6=(2 3) the 22=4 blocks are 1.6, 2.3, 3.2 and 6.1, the “whole” positions on 

the inversely proportional line 6=x.y (see the black blocks figure for 6, below). 

 

Prime numbers (like 5 or 313) have only two “stepping stones” to offer when walking the 

line n=x.y, on both axes: 5, 1 and 1, 5 and 313, 1 and 1, 313 respectively. Primorial 

numbers offer the most convenient, the most both effective and efficient “stepping stones” 

when travelling the line n=x.y. Square-free numbers that are not primorial require larger 

jumps. Squared numbers miss stepping stones (factors) on the basis of the tantalizing 

scheme presented earlier. 

For a primorial number, x½ cannot be a whole number, as its prime factorization is square-

free. Due to the discrete inversely proportional line n=x.y it must be true, however, that 

multiplying the two middle numbers results in n. And indeed, for the 30030 example 

above, multiplying 165 and 182 results in 30030. Likewise, in the 210 example presented 

earlier, multiplying 14 and 15 (or 15 and 14) results in 210: 

1   2   3  5  6  7  10 14 15 21 30 35 42 70 105 210       

210 105 70 42 35 30 21 15 14 10 7  6  5  3  2   1       

When looking back to the factor expansions according to fp of the p=4, 5 and 6 primorial 

numbers 210, 2310 and 30030, two pages back, multiplying the middle two factors, as 

seen from a strictly binomial Sawtooth point of view, results in: 

 p=4  210=(2 3 5 7):  14.15=210 

 p=5  2310=(2 3 5 7 11): 77.30=2310  

 p=6  30030=(2 3 5 7 11 13): 165.182=30030  

When p=even, multiplication of the two middle numbers results in the primorial number. 

The two middle numbers are the two factors approaching x½ best. When p=odd, 

multiplication also results in the primorial number. But in these cases the first middle 

number (for the p=5 case, 77) is much larger than the second middle number (30). 
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The reason is that, in the binomial expansion, the factors are not yet interleaved. I repeat 

the p=odd expansion of 2310 for convenience (you might want to review the p=even 

expansions of 210 and 30030 as well, see a few pages up): 

2310=(2.3.5.7.11) p=5                                               

                                                                    

k=0 =>  1     (1)                                                      

k=1 =>  5     (2 3 5 7 11)                                      

k=2 =>  10    (6 10 14 15 21 22 33 35 55 77)                    

k=3 =>  10    (30 42 66 70 105 110 154 165 231 385)             

k=4 =>  5     (210 330 462 770 1155)                            

k=5 =>  1     (2310)                                            

                                                                         

The inversely proportional relationship n=x.y orders the factors according to the number 

line (it is a pattern after interleaving). For p=4 and p=6 and every other primorial number 

with an even number of prime factors, the Sigma Möbius will exhibit a rotational 

symmetry, as shown by their Sawtooths. As a result, the two middle numbers will not 

change position because of interleaving. For p=5 and every other primorial number with 

an odd number of prime factors, the Sigma Möbius will exhibit a mirror symmetry, as 

exhibited by their Sawtooth.  

Take the p=5 example: k will increase from 0 to 5. The mean k-value therefore is not a 

permitted k-value: 5/2=2½ (whole numbers are required). The two middle k-values 

therefore are the result of rounding down 2½, resulting in k=2 (the “floor”), and rounding 

up 2½, resulting in k=3 (the “ceiling”). The highest factor on the k=2 range (its upper 

bound) is 77, and the lowest factor on the k=3 range (its lower bound) is 30, and 

77.30=2310.  

The teeth of the Sawtooths in general are most prone to interleaving, as they represent 

the boundaries of the k-ranges. For p=odd, the middle tooth (there is one middle tooth for 

p=odd) of the Sawtooth is the biggest in terms of Sigma Möbius, and as a consequence 

this tooth tip will show the most intensive interleaving. As a result of their boundary 

nature, the two middle numbers of the p=5 primorial number will be most prone to 

interleaving. The reason is that they represent the largest factor on the k-range resulting 

from taking the floor of p/2 (in the example the floor of 5/2, resulting in the k=2 range), 

and the smallest factor on the k-range resulting from taking the ceiling of p/2 (in the 

example the ceiling of 5/2, resulting in the k=3 range).  

For p=even, the middle position of the Sawtooth is at Sigma Möbius value 0, and in the 

middle of the k-range possessing most factors. As a consequence, it is most inert in terms 

of interleaving. As a consequence of this, for p=even, the two middle Sawtooth factors are 

exactly the same as the two middle Ordered Sawtooth factors. For example for the p=6 

primorial number, 165.182 = 165.182 = 30030. For p=odd, on the other hand, the two 

middle Sawtooth factors will be quite different from the two middle Ordered Sawtooth 
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factors, and even more so if p is large. For example for the p=5 primorial number, 77.30 

= 42.55 = 2310 (before interleaving, 77 and 30 are the two middle factors, and after 

interleaving, 42 and 55 will be the middle factors, in both cases their product must be 

2310 because of the symmetry). For p=13 the difference between the two middle factors 

before and after interleaving is even more pronounced: 4199.1155 = 2145.2261 = 

4849845. 

Quantum wave patterns 

When looking at the Ordered Sawtooth of the p=4 primorial, 210, you might see the 

emergence of a very typical pattern, well known in quantum physics: a wave pattern. For 

the p=4 primorial this might not be very convincing yet, but the Ordered Sawtooths of 

higher primorial numbers like p=7 and p=8 readily reveal their secret (7 and 8 teeth are 

present respectively, when neglecting the much smaller “in between” teeth):   

 

 

Note that the basic Sawtooth patterns shape these wave patterns (as a consequence the 

symmetry is different for even and odd numbers of prime factors), and the interleaving 

turns them into the Ordered Sawtooth wave patterns. The highest peaks (teeth) of the 

Sawtooth patterns of primorial numbers are most heavily replaced when ordering them 

according to the number line: they consist of the highest lower k factors and the lowest 

higher k factors, and therefore they are most likely to interleave. When making a primorial 

step, teeth interleave within their own boundaries, it may be compared with the eroding of 

a sand castle at the beach, and this tantalizing process results in the typical quantum 

waves. Indeed they rest on a quantum process, as factors are only allowed to fill the 

inversely proportional line n=x.y with whole number x and y values (perspectives act like 
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quants). When making primorial steps, f.e. from 6=(2 3) to 30=(2 3 5) to 210=(2 3 5 7) 

to 2310=(2 3 5 7 11), all the non-primorial numbers in between the numbers of the 

primorial sequence will obey and fill their specific non-primorial formula n=x.y with factors 

as well.  

Back to Riemann and Mertens: three categories of numbers 

Now back to the Riemann hypothesis and the Mertens function. Edwards (1974, paragraph 

12.1), following Littlewood, provides a direct equivalent to the Riemann hypothesis in 

terms of the Mertens function, and I repeat:  

“If M(x) = O(x(1/2+ ε)) is true with probability one, the Riemann hypothesis is true 

with probability one.” 

It would therefore suffice to prove that M(x) grows less rapidly than x(1/2+ ε) for all ε > 0, in 

order to prove the Riemann hypothesis. The characteristic Mertens function is repeated 

below for m up to 10.000 (source: Wikipedia). Many people see merely noise. I already 

mentioned that I do not see noise. I see the first part of a specifically interleaved binomial 

bell curve.  

 

A crucial key to understanding the relevance of primorial steps and interleaving for proving 

the Riemann hypothesis is the definition (perhaps the distinction) of three categories of 

numbers from 1 to a (any) primorial number: 

1. Factors of this primorial number (square-free, see the sigma Möbius wave pattern) 

2. Squared numbers (they are Möbius 0) 

3. Square-free non-factors 

From here on, I will use “cat” as an abbreviation of “category”, f.e. cat 1 is short for 

category 1. 

A number is either not categorized yet (it is bigger than the primorial number of concern), 

or it is either cat 1 or cat 2 or cat 3. In combination the three categories must cover all the 

numbers from 1 to the primorial number, even if we do not know where they hide 

themselves. All three categories in combination play imposing games. Note that cat 2 is 

fixed (a number is either squared or not, no primorial step can alter this), whereas cat 1 
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and 3 are interchangeable in specific ways, depending on the primorial number of choice 

and whether we are primorially stepping up or down. The number 1 is always cat 1. 

The three categories allow for using recursive schemes (in line with Recursive 

Perspectivism). The segment of the number line from 1 to a primorial number I will call 

the primorial segment of this primorial number. Primorial steps, f.e. from 30=(2 3 5) to 

210=(2 3 5 7): 

 Increase the primorial segment by a factor equal to the newly added prime factor 

(in the example this factor is 7, and 210=30.7); 

 Double the number of cat 1 numbers (as the number of factors equals 2p and p 

increases with 1); 

 Recursively turn some cat 3 numbers of the original primorial number (30 in the 

example) into cat 1 numbers of the new primorial number (210 in the example), on 

the basis of the “incorporation” of the new prime number (7) in the prime 

factorization; 

 Introduce new cat 3 numbers for the new primorial number (in this case between 

30 and 210). 

Due to the recursiveness of the primorial sequence, the original cat 1 numbers (the 

factors) will remain cat 1 for the new primorial number as well. Cat 2 numbers (the 

numbers with a squared prime factorization) will always be cat 2 anyhow, for both the 

original and the new primorial number (they cannot change). So in effect during a 

primorial step some cat 3 numbers are turned (converted) into cat 1 numbers on the 

original primorial segment (in the example between 1 and 30), and new cat 3 numbers are 

created on the new part of the primorial segment (in the example between 30 and 210). 

The converted numbers were “strange” before on the basis of the newly added prime 

factor, as introducing this new prime factor turns them from cat 3 into cat 1. The new cat 

3 numbers were not yet categorized, and contain at least one prime factor that is not on 

the prime factorization of the new primorial number. 

Stochastics, predetermination, and the binomial bridge  

In this paragraph, firstly I will explain the way in which the Mertens function and the 

number of Heads minus the number of Tails of a coin tossing sequence might be the same, 

notwithstanding their large differences. After that, I will introduce the condensation area 

and the free zone: two special parts of any primorial segment as far as interleaving, the 

Riemann hypothesis and the Mertens function are concerned. On the basis of this, the 

crucial steps in proving the Riemann hypothesis can be made.     
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Where stochastics and predetermination meet. The seemingly stochastic nature of 

predetermined prime numbers has baffled many mathematicians (see for example the 

Denjoy interpretation of the Riemann hypothesis). The number of Heads minus the 

number of Tails of a coin tossing sequence is not unlike the Mertens function: the Sigma 

Möbius over the square-free numbers. They appear to be strangely similar and extremely 

different at the same time.  

They are strangely similar in that the agreement between the appearance of square-free 

numbers with an even or an odd prime factorization on the one hand, and the appearance 

of Heads and Tails in a coin tossing sequence on the other is quite appealing. The Denjoy 

interpretation of the Riemann hypothesis would require a proof of two statements: the 

occurrence of μ(n) = +1 equals the occurrence of μ(n) = -1, and occurrences of +1 and -1 

are independent of each other. Prove these two statements, and you will have proven the 

Riemann hypothesis. Primorial sequences clearly show, however, that many of the square-

free numbers are dependent of each other. And indeed, so far the Denjoy interpretation 

has not offered a proof of the Riemann hypothesis yet. 

At the same time they are extremely different, as a coin tossing sequence is completely 

and utterly stochastic, whereas the Mertens function is completely and utterly 

predetermined. A larger difference is difficult to conceive.  

In case of a count tossing sequence, we do have to go the whole nine yards in order to 

precisely know the number of Heads minus the number of Tails of a particular sequence of 

tosses. The reason is that the coin tossing sequence is a stochastic procedure.  We know, 

however that, in a coin tossing sequence, with probability 1 the number of Heads minus 

the number of Tails grows less rapidly than N(1/2+ ε).  

In case of the Mertens function, it would appear that here also we would have to go the 

whole nine yards in order to know M(m). But do we really?  

Earlier in this paper I have discussed the following sentence: 

The average of an increasing number of sequences of p coin tosses will approach the 

binomial pattern of the n-th row of Pascal’s triangle better and better.  

This sentence is interesting, as it highlights the role of binomial patterns in coin tosses. 

Binomial patterns are rows of Pascal’s triangle, and each row constitutes a binomial bell 

curve. For high p, the binomial bell curve is the underlying pattern of the Gauss curve, 

which rules in stochastics. We also know that the Sigma Möbius of the cat 1 numbers (the 

factors) of a primorial number will follow a strict binomial bell pattern. This binomial bell 
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curve therefore provides a potential bridge, a similarity between Sigma Möbius and coin 

tosses. 

For primorial numbers, the function fp presents the appropriate binomial pattern row, and 

the Sigma Möbius of the cat 1 numbers (the factors) of a primorial number will therefore 

be 0. Actually, for primorial numbers with an even prime factorization, the Sigma Möbius 

will be 0 already at half the cat 1 numbers (the factors)! See the Sawtooth graphs above. 

Due to this similarity (this bridge), the following must hold true:  

The Sigma Möbius over the cat 1 numbers of a growing primorial sequence will grow 

less rapidly than x(1/2+ ε) for all ε > 0.   

Cat 1 numbers will interleave, but this doesn’t alter this fact: interleaving merely re-orders 

the Sawtooth Möbius values according to the number line, but does not change these 

Möbius values. This interleaving will obey primorial k-range boundaries recursively, and 

therefore will respect the boundaries of consecutive primorial numbers. Reordering 

therefore will not alter (or at least will not make unbound) variability on the long run. 

In case of the cat 1 numbers (the factors) of the p=n primorial number, we do not have to 

go the whole nine yards in order to know that the Sawtooth pattern will be binomial 

according to the n-th row of Pascal’s triangle, and that the exact outcome of the Sigma 

Möbius will be 0. The reason is that, as soon as the prime factors determining the 

primorial number are known, the sequence of factors is completely and 100% 

predetermined. The pattern therefore must be binomial, as shown by the Sawtooth, and 

the exact outcome of the Sigma Möbius over the factors (cat 1) must be 0. 

The prime numbers and the factors are predetermined and implied. The very 

moment that we understand the procedure “addition” for whole positive numbers as 

connecting whole segments on the number line, and “multiplication” as “repeated 

addition”, the prime numbers are completely predetermined constructively and recursively, 

albeit implicitly. We only have to multiply (to repeatedly add) the prime factors of a 

primorial number so far, allowing for squares. The first “vacancy” on the number line that 

cannot be “filled in” in this way must be the next prime factor, required for calculating the 

following primorial number. A prime number by definition cannot be constructed by means 

of multiplying smaller whole numbers, and this procedure therefore offers the constructive 

definition of prime numbers. After finding a new prime number, the procedure can be 

repeated recursively, including the new (the lastly added) prime number.   

As soon as the primorial prime factors of a new primorial number are known, the complete 

category 1 number set (the factors) up to and including the new primorial number is fixed 
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and determined. Their binomial Sawtooth structure is implicitly known, as is the resulting 

Sigma Möbius.  

Proof spoilers, the condensation area and the free zone 

We have established two things now: 

1: The Sigma Möbius over the cat 1 numbers (the factors) of a primorial number is 0. 

For primorial numbers with an even prime factorization, the Sigma Möbius over half the 

cat 1 numbers is 0. 

2:. The Sigma Möbius over the cat 1 numbers of a growing primorial sequence will grow 

less rapidly than x(1/2+ ε)  for all ε > 0.  

However, this does not suffice for our purpose: proving the Riemann hypothesis. In order 

to do this, the Sigma Möbius over all the numbers  (which is the Mertens function) should 

grow less rapidly than x(1/2+ ε)  for all ε > 0.    

The crucial step: getting rid of proof spoilers. Remember that cat 2 numbers cannot 

be turned into cat 1 or cat 3 numbers: they simply are what they are. This identifies cat 3 

numbers as the proof spoilers of the Riemann hypothesis: they prevent the establishment 

that M(x) grows less rapidly than x(1/2+ ε)  for all ε > 0. They also prevent the Mertens 

function from 1 to a primorial number (the Sigma Möbius from 1 to a primorial number) 

from becoming 0 (which essentially is the same).  

See for example the primorial segment from 1 to 30=(2 3 5), below. On the second row, 

the three categories of the numbers are specified. On the third row, the value of the 

Mertens function is provided.                                                         

 

The value -3 of M(30) at the right end of the third row (the Mertens row) is completely due 

to the category 3 numbers (the proof spoilers), as the sigma Möbius over cat 1 numbers 

(the factors) of a primorial number equals 0. (The Möbius value of cat 2 numbers, the 

squared numbers, is 0.) 

The crucial step in proving the Riemann hypothesis therefore is dealing with the proof 

spoilers (the cat 3 numbers). And one way of doing this is getting rid of them.  

A careful analysis of the development of categories on primorial segments will shed light 

on the possibilities of getting rid of the proof spoilers. In this analysis I will emphasise both 

the start and the end of primorial segments. While developing the primorial sequence, at 
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the start of the consecutive primorial segments a divergently growing “condensation area” 

will develop. Likewise, and for reasons of symmetry, at the end of the primorial segment a 

divergently growing “free zone” will manifest itself. They will be explained and discussed 

below.  

The condensation area. A specific starting range of a primorial segment (the segment 

from 1 to the primorial number of concern) of any primorial number cannot contain any 

cat 3 number. This cat 3 free starting range I call the condensation segment or 

condensation area. It consists completely of category 1 and category 2 numbers.  

The German mathematician David Hilbert (1862-1943) introduced the term condensation 

for the flocking together of prime numbers on different parts of the number line. Perhaps 

this metaphor was inspired by the way in which for example H2O vapour molecules 

condensate into water droplets. It is intriguing that the name condensation area is so well 

in place here, as around 1920-1930 the formalist Hilbert was an opponent of Luitzen 

Brouwer, a developer and proponent of intuitionism in mathematics. As the outcome of a 

fierce scientific battle between formalism and intuitionism in mathematics, intuitionism did 

barely survive. Notwithstanding this, recursive primorial steps and recursive perspectivism 

seem to fit the bill of intuitionistic mathematics better than formal mathematics, as far as I 

am able to distinguish these two matters (but remember: I am a reflective pragmatist, not 

a mathematician).   

Cat 1 numbers of a primorial number are flocking together at the very beginning of the 

primorial segment. The condensation metaphor is even more apt on this segment, as it 

has a significant philosophical relevance: I use the term directly inspired by its physical 

meaning in Bose-Einstein condensation. In a similar way that Bose-Einstein condensation 

causes superconductivity of electrons, primorial category 1 condensation causes 

superconfigurability of perspectives. I suspect that (and Recursive Perspectivism suggests 

that) these two phenomena are deeply akin.   

In the condensation area, the category 1 condensation is pushed to its maximum, as 

category 3 numbers are completely absent (category 2 numbers will always be category 2 

numbers: they are “inert” to category changes).  

The condensation area of a primorial number of p prime factors extends3 (overshoots) the 

segment from 1 to the largest prime factor of this primorial number: it ranges from 1 to 

the anticipated prime number of the forthcoming primorial step minus 1. In other words: 

the (p+1)th prime number minus 1 (remember: the (p+1)th prime number itself is 

                                           

3 From a philosophical point of view it is existential (this reminds me of Heidegger’s Sein und Zeit). 
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category 3). The reason is that, as long as no new prime factors are introduced, no new 

non-factor square-free numbers (i.e. category 3 numbers) are possible. Or the other way 

around: every square-free number to be encountered up to the next prime number will 

consist of prime factors of the primorial number of concern, and therefore will have to be 

category 1.  

On average and on the long run, the overshoot of the (p+1)th prime number minus 1 is 

governed by the well-known analytic estimate of the Prime Number Theorem (PNT): the 

number of primes to n is ∏(n) ~ n/ln(n), see the figure below4.  

 

For example: the category 3 free condensation segment of the primorial numbers: 

 6=(2 3)     is   5-1=4 

 30=(2 3 5)     is   7-1=6 

 210=(2 3 5 7)    is   11-1=10 

 2310=(2 3 5 7 11)    is   13-1=12 

 30010=(2 3 5 7 11 13)   is   17-1=16 

 510510=(2 3 5 7 11 13 17)  is   19-1=18  

During a primorial sequence, the condensation segment boundary of the (p+1)th prime 

number minus 1 must be valid for every primorial number, even if we do not have a clue 

of the whereabouts of this anticipated (p+1)th prime number and the (p+1)th primorial 

number on the number line. And there always will be such an anticipated next prime 

number (Euclid proved this). The condensation segment overshoots the last prime factor 

by a minimum of 1 (this is in case of a twin prime: the lastly added primorial prime is the 

first of the twin primes, the anticipated prime is the second of the twin primes). Its 

maximum obviously depends on the prime gap between the p-th and the (p+1)th prime 

                                           

4 Source: Mathworld. ∏(n) ~ Li(n), an even better analytical estimate, firstly discovered by Gauss, see 
www.mathworld.wolfrahm.com under Prime Number Theorem.  

http://www.mathworld.wolfrahm.com/
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number. Again, the PNT governs asymptotically: for large n, a number is a prime with 

possibility ~1/ln(n), and the average spacing between the primes to n will be ~ln(n). 

(These statements are equivalent to the PNT.) 

The free zone. The factors x (or y) over the primorial segment of a primorial number n 

will obey and fill the inversely proportial line n=x.y in a quantized way (only whole 

numbers are allowed). Ordered sawtooths are symmetrical (whole number positions on 

inversely proportional lines are diagonally symmetrical). A primorial step will therefore 

simultaneously change the beginning (the condensation area) and the end of the new 

primorial segment with respect to the old one.  

The right end (the upper end) of primorial segments therefore is interesting as well. 

Indeed, there exists a completely category 1 free zone between any primorial number and 

the exact half of this number. The primorial number and its (whole number) half always 

are the two largest factors of a primorial number, as 2 is a prime factor: for this reason 

they are category 1, and all the numbers in-between therefore must either be category 2 

or category 3.  

For example: the category 1 free “free zone” of the primorial numbers: 

 6=(2 3)     is   3-6 (excluding 3 and 6) 

 30=(2 3 5)     is   15-30 (excluding) 

 210=(2 3 5 7)    is   105-210 (excluding) 

 2310=(2 3 5 7 11)    is   1155-2310 (ecluding) 

 30010=(2 3 5 7 11 13)   is   15005-30010 (excluding) 

 510510=(2 3 5 7 11 13 17)  is   255255-510510 (excluding) 

During a primorial step, the condensation area will be extended with the forthcoming 

prime gap. Likewise, the free zone will be “increased” to half the new primorial number.  

Bonse’s inequality: the natural log and the square root play leapfrog. Bonse’s 

inequality5 states that if p1, p2, …, pn, pn+1 are the first (the smallest) n+1 prime numbers, 

then p1 . p2 . .. . pn > (pn+1)
2 for all n > 3. In words: the primorial number must be larger 

than the square of the forthcoming prime number. Similar inequalities exist for higher 

                                           

5 A complete elementary proof should be available in H. Bonse (1907), "Über eine bekannte Eigenschaft der Zahl 

30 und ihre Verallgemeinerung", Archiv der Mathematik und Physik 3 (12): 292–295. 
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powers, as can be proven on the basis of Bertrand’s postulate6 (there is always a prime 

between n and 2n, this was proven in 1852).  

As a consequence, a primorial number (the left part of the Bonse inequality) is larger than 

the square of the condensation area plus 1 (the right part of the Bonse inequality: 

remember, the condensation area equals the forthcoming prime number minus 1). At the 

same time, subsequent primes to be encountered while making primorial steps will obey 

the natural logarithm of the Prime Number Theorem (an analytical estimate).  

A remarkable feature of the natural log, ln x, is that it increases slower than any power, 

xa. And the same holds true for any power of ln x: the graph of (ln x)N will eventually drop 

below, and for ever after stay below, the graph of xa, no matter how big N or how small a. 

John Derbyshire elaborates on this in his popularized book7 “Prime Obsession”, chapter 5, 

Riemann’s zeta function, paragraph IV. Put succinctly: a graph of ln x (or (ln x)N) will 

eventually cut any xa curve, and remain below it ever after. This obviously is true for large 

whole number a’s, like 2 or 5: the x2 curve is known to go sky high quite fast. But, 

perhaps more surprisingly, it is true for fractional a’s, like x½, as well, although for really 

small a’s it may take quite a while. As Derbyshire puts it: “You need to go out east to the 

neighbourhood of x=7.9414x103959 before (ln x)100 drops below the x0.1 curve; but 

eventually it does.” 

In making primorial steps, an intriguing wheel has been greased. The primorial number of 

concern will grow with a factor equal to the newly added prime number, on the long run 

governed by the natural logarithm of the Prime Number Theorem. This implies a 

logarithmic growth. At the same time the square of the condensation area of this primorial 

number of concern will approach the forthcoming primoral number better and better. Or: 

the condensation area will approach the square root of the forthcoming prime number of 

the next primorial step better and better. This implies a power growth. While making 

primorial steps, the natural logarithm and the square root play leapfrog in a fascinating 

way, keeping each other in balance better and better on the long run, and none of them 

giving in. This offers an intriguing asymptotic view on the truth of the Riemann hypothesis. 

The proof. From the point of view of the Riemann hypothesis, it is very interesting to 

know the way in which the fractions of cat 1 and cat 3 numbers will develop on the whole 

                                           

6 Mfb, staff mentor of physics forums, replies at a question concerning Bonse’s inequality that as a consequence 

of Bertrand’s theorem the following must hold: . I quote: “As long as the 

product of the remaining primes is larger than 64, the product is larger than . That happens for 2*3*5*7, so 

2*3*5*7*11*13*17 = 510510 > 6859 = 193 is the first number where the general proof works, but 2*3*5*7*11 
> 13^3 is where the inequality starts being valid. It should be obvious how to extend that to larger powers.” 
Reference https://www.physicsforums.com/threads/bonses-inequality.903074/ 
7 Thank god for high standard popular books, they provide bridges to the disciplinary fortresses of this world! 
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number line during continual primorial steps. If during the development of the primorial 

sequence cat 1 would systematically and progressively drive out cat 3, the proof spoilers 

would disappear, M(x) = O(x(1/2+ ε)) would become true with probability one, and therefore 

the conclusion would have to be that the Riemann hypothesis is true with probability 1. 

And this is exactly what happens. While making primorial steps, the condensation area, an 

increasingly and divergently growing segment from 1 upward, will not contain any 

category 3 numbers whatsoever. Simultaneously, and for symmetrical reasons, the free 

zone (free of cat 1 numbers) will develop between the consecutive primorial numbers and 

their halves. A stronger and stronger microscope will be required to be able to notice the 

condensation area, as it becomes very (very! very!!) small with respect to the growing 

primorial segment. Nonetheless, the condensation area is a progressively upward moving 

frontier, and divergent.  

As a result, M(x) = O(x(1/2+ ε)) is true with probability one, and therefore the Riemann 

hypothesis should be true with probability 1. 

The growing condensation area is presented in the 

figure at the right hand. Due to the symmetry of 

the discrete inversely proportional line n=x.y, the 

absence of cat 3 numbers in the condensation area 

will find its counterpart in the absence of cat 1 

numbers in the free zone.  

As a result of consecutive recursive primorial steps, 

from the condensation area to the free zone the 

number of cat 1 numbers will thin out, converging 

to (but never quite reaching) 0 % of the square-

free numbers, and the number of cat 3 numbers 

will increase, converging to (but never quite 

reaching) 100 % of the square-free numbers. Cat 2 

numbers will converge to zeta (2), in which zeta is 

Euler’s zeta function. 

While making primorial steps, for any consecutive primorial number its condensation area 

(a growing and diverging segment at start of the primorial segment) will be completely cat 

3 free. As a consequence, the Mertens function on the one hand and the Sigma Möbius 

over the factors (the cat 1 numbers) of the primorial number of concern on the other hand 

will be exactly (!) equal for this condensation area. Proof spoilers for the Riemann 
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hypothesis will be absent, and as a result M(x) grows less rapidly than x(1/2+ ε) for all ε > 0. 

The Riemann hypothesis therefore must be true.  

We may want to look at this in the following manner. When looking at a graph of the 

Mertens function M(m) from 1 to m, no matter how large m will be, we will always be 

looking at (a first part of) the condensation part of a possibly enormous (enormous! 

enormous!!) primorial number. This primorial number can be calculated by simply 

multiplying all the prime numbers in this condensation segment graph from 1 to m.  

In summary: due to the recursive nature of primorial steps, resulting in a primorial 

sequence, and the absence of category 3 proof spoilers in the growing and diverging 

condensation area of the primorial numbers in this primorial sequence, the Riemann 

hypothesis must be true. 

Some graphs that illustrate the formal point 

Firstly the development of squared and square-free numbers is presented (remember: the 

fraction of squared numbers converges to zeta (2), but nonetheless this convergence is 

non-monotonous and rather messy).  

After that, the growing condensation area is shown while making primorial steps. 

Simultaneously these graphs show the thinning out of cat 1 numbers and the thickening of 

cat 3 numbers as a fraction of the square-free numbers. The condensation area is cat 1 

free. The free zone is almost cat 1 free (with the exception of the primorial number m and 

its half). Category 1 numbers will be completely absent in the segment between m and 

½m. Due to the symmetry in m=x.y, all the new cat 1 numbers of each step (their total 

number doubles) minus 2 therefore will fall in between the condensation area of the last 

primorial step and half the new primorial number. This results in a preference for positions 

near the diagonal (a direct, albeit discrete, relationship with the central limit theorem and 

the Lindeberg condition exists, I suspect).  

As a result, from the end of the condensation area to the beginning of the free zone, at 

start cat 1 numbers will dominate and at the end cat 3 numbers will dominate. Due to 

interleaving this will look like a messy and rather fluctuating process, but recursively the 

boundaries of the k-ranges of the primorial steps described before will apply. During 

primorial steps, cat 1 numbers will drive out cat 3 numbers along a moving, albeit diffuse, 

frontier.  
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A: Graphs of squared and square-free numbers  

Two categories of numbers. 
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B: Graphs of condensation and thinning out: some primorial steps 

Note that the categories are presented in the order cat 2, cat 1 and cat 3 (from left to 

right), as this shows the disappearance of cat 3 numbers in a nice way. 
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Epilogue 

This paper represents the thoughts and considerations which make me believe that the 

Riemann hypothesis must be true. I recall: I am neither a mathematician nor a 

physicist. I do admire these disciplines, as I do admire any serious area of 

committed human endeavour, but I hardly use a mathematical or physical style of 

arguing or reasoning myself. I do not claim proficiency in either of these fields. 

Professionally, I am best characterized as a reflective pragmatist who uses a broad 

spectrum of scientific insights. In addition to this, I value and enjoy 

philosophizing and theorizing. However, what inspires me most and always remains my 

focal point is improving societal practice itself. This paper heavily rests on my 

forthcoming book: The path of humanity. The Riemann hypothesis, Recursive 

Perspectivism and The path of humanity share common grounds, and for this very reason 

I’ve hesitantly entered the domain of number theory and the Riemann hypothesis from 

the vantage point of Recursive Perspectivism. Hesitantly, as I am well aware of the 

significance of the Riemann hypothesis and my mathematical and physical proficiency 

level: I have very often felt like a fish out of the water. 

It may be clear: I think the Riemann hypothesis holds water, and I have written down 

my ideas for a proof, albeit in a perhaps unconventional manner. I am not sure (and I 

sometimes even doubt) whether the exposé so far would impress, or even make sense to 

specialists like professional mathematicians or physicists at a first glance. 

Recursive Perspectivism is highly multi-disciplinary, and many disciplinary 

professionals are not. Recursive Perspectivism requires a willingness to articulate 

and reconsider philosophical premises of our understanding of our societies, and in 

my experience many disciplinary specialists are not willing to do so. In addition, at 

places my arguments may very well be error-ridden, and I am very likely to cut 

corners from a mathematical point of view. Reading and appreciating this paper will 

require an open and forgiving mind. 

But grosso modo I think that my arguments for thinking why the Riemann hypothesis is 

true are written down clear enough for the time being. I hope they will help in 

giving attention to Recursive Perspectivism and its implications for human 

development and societal innovation, the main themes of the forthcoming book. All 

three the Riemann hypothesis, Recursive Perspectivism and The path of humanity are 

built on prime numbers, and this has important implications for human development and 

societal innovation. It may be of help in finding better ways to a more sustainable, 

a better future. For these very reasons I’ve written this paper, the presentation and 

the book. Of course I am open to comments and corrections. But most of all, I would 

like to suggest that you read the presentation and “The path of humanity” (Dutch 

version in the beginning of 2018, English version May or June 2018), and engage in 

the explorations they present. Thank you for your attention.                    

Henk Diepenmaat 

Zeist, The Netherlands, 31-12-2017 

henk.diepenmaat@actors.nl  
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